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Treatment of laser-induced thermal acoustics in the framework of discrete kinetic theory

F. Hanse# W. Koller," and F. Schrrer*
Institute for Theoretical Physics, Technical University Graz, Petersgasse 16, A-8010 Graz, Austria
(Received 24 May 1999; revised manuscript received 3 Septembej 1999

The physics behind the laser-induced thermal acoustics technique is dealt with on a microscopic level. A
discrete velocity model of the Boltzmann equation for inelastically interacting gas mixtures in the presence of
two counterpropagating laser beams is established. The collisional scheme for the model is developed by
taking into account elastic and inelastic interactions between the gas particles, on the one hand, and the
interactions between monochromatic laser photons and gas particles, on the other hand. The formation and
evolution of laser-pulse-driven thermal and density gratings are simulated by numerically solving the discrete
kinetic equations based on the fractional step method. Numerical results are provided for a wide scope of
Knudsen numbers.

PACS numbdrs): 02.70—~c, 51.10+y, 47.45-n, 33.50.Hv

[. INTRODUCTION inferred, including the sound speed, thermal diffusivity, and
other properties that affect the development of the laser-

The excitation of acoustic and thermal waves by the usénduced gratings. Therefore, deep insight and understanding
of pulsed laser light is a well-known phenomenon. It wasof the dominant processes is very important.
first reported as an artifact in degenerate four-wave-mixing On physical grounds, the formation and evolution of these
experiments performed on strongly absorbing transitions imgratings has been treated using the equations of fluid dynam-
collision-dominated gas-phase systep ics in its linearized fornj4]. This assumes a uniform behav-

A recently presented method based on this phenomenon isr of the medium and small perturbations. In addition, the
the laser-induced thermal acousti¢dTA). It is an optical assumption of linear hydrodynamic behavior eliminates a va-
four-wave-mixing(FWM) technique for remotely and non- riety of phenomena which could affect the signals in real
intrusively measuring the physical and chemical propertiegexperiments. Moreover, using hydrodynamic equations as-
of gases. The development of this techniqgue by Cummingsumes scales of gradients of fluid properties to be small com-
[2] addressed issues including the need to make measurpared to molecular mean-free paths. This implies that for
ments in a single laser pulse as well as the need to maKkarge Knudsen numbels ratio between a laboratory length
measurements in extremely challenging environments. Somend the mean free patlor in situations in which nonlinear
examples are measurements in the primary and reflecte@ffects gain importance, other models have to be used.
shock regions at the exit of a combustion driven shock tube Cummings himself proposed resorting to a molecular gas-
or measurements of low concentrations of toxic gases imlynamics model. A microscopic approach also allows the
combustion engineg3]. investigation of the evolution of each component of the me-

LITA scattering is subdivided into two steps. In the first dium. This could be interesting when one deals with species
step, light from a powerful pulsed laser is split into two gratings which are generally ignored. A model describing the
phase-coherent beams that intersect at a shallow angle. Theedium on a microscopic level consists of a set of Boltz-
region of the intersection of the two laser beams defines thmann equations for inelastically interacting gas mixtures
sample volume. The interference of the driver laser beamfs—7]. These coupled nonlinear integrodifferential equations
creates an electric field intensity grating. The gas mixture iroppose direct analytical and numerical treatm{éné]. One
the sample volume responds to the intensity grating by opway out of this problem is the discretization of the velocity
toacoustic effects. The two major optoacoustic effects argpaceg8,9]. Early discrete velocity models of the continuous
thermalization and electrostriction. These effects can perturBoltzmann equation refer to idealized gases with only one or
the bulk properties of the medium. Other optoacoustic eftwo particle speed$10—12. This was a big shortcoming
fects, including photophoresis and thermophoresis, are of mbecause the temperature was ill defined, and it would be an
nor importance. exaggeration to speak of a velocity distribution when only

The second step involves scattering of a source beam lawo velocity moduli were involved. The physical discrete
ser into a coherent signal beam by optoacoustic effects. Imodels, however, are the multispeed opE3).
gases, the most important effect is scattering from density In this paper a discrete velocity model of Shizuta type
perturbations. The signal beam is modulated in time by thevith six speeds is used to describe the formation and dynam-
evolution of laser-induced perturbations. From these moduics of laser-induced density and thermal gratings. Section Il
lations, accurate physical properties of the medium may beleals with the general microscopic model. We describe the

physical situation together with the dominant interaction pro-
cesses. We introduce the discrete velocity model and discuss

*Electronic address: hanser@itp.tu-graz.ac.at its most relevant features. From the discrete velocity model
"Electronic address: kowin@itp.tu-graz.ac.at we derive the discrete kinetic equations which govern the
*Electronic address: schuerrer@itp.tu-graz.ac.at system. The last subsection treats some aspects of equilib-
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FIG. 1. Experimental situation: The region of the intersection of 16
the two driver laser beams defines the sample volume. 3 21 10 1 24
rium. In Sec. Ill we solve numerically the discrete kinetic 22 16 23
equations by applying the fractional step method. We simu-
late the formation and evolution of the laser-induced gratings
in different situations. Finally, in Sec. IV we give a conclu-
sion. H 28 3

FIG. 2. Regular discrete velocity model of Shizuta type with 36

II. MICROSCOPIC MODEL velocities and six speeds.

A. Physical situation
. . - A* +p—A+p+p.
As already mentioned in Sec. I, and as can be seen in Fig. P=ATPTP

1, the region of intersection of the two driver laser beams ) ) _ )

defines the sample volume. The two driver beams interferd € €lastic particle-particle scattering processes are modeled
forming an intensity grating. In our formalism the laser in- Py €lastic hard sphere CrOSfS.SECt'QTf#NHMN’ with M,N
tensity is represented by photopsThe gas mixture in the =A,A*,B, whereas the collisional excitation processes are
sample volume is composed of the molecufesheir elec-  indicated by the cross sectiong, ,a« andolyy  ae5- The
tronically excited stateA*, and a second specids with inelastic cross sectionsfAMAA and a',f* s_ap for the in-
massesn, , Max andmg, respectively. The laser frequency verse processesollisional de-excitationare determined by

v is tuned to excite the electronic transition between thea microreversibility conditiorf7].

moleculesA and A*. The energy gap of the transition is  Interactions between photopsof the pulsed driver laser
given by AE=E(A*)—E(A)=hv. On a microscopic level, and particle specied and A* are taken into account by
the molecules are allowed to undergo the following types oimeans of the Einstein coefficienisand 3 [14]. Spontaneous
interaction processesl) elastic scattering between the mol- emission of photons is controlled hy. The magnitude of

ecules,
M+N=M+N for M,N=AA* B;
(2) collisional excitation of molecule8,
A+A—A*+A,
A+B—A*+B;
(3) collisional de-excitation of molecules*,
A*+A—A+A,
A*+B—A+B;
(4) spontaneous emission of photgmby moleculesA*,
A* —A+p;
(5) absorption of photonp by moleculesA,
A+p—A*;

and (6) stimulated emission of photoqsby moleculesA*

absorption and stimulated emission phenomena is propor-
tional to 8.

B. Discrete velocity model

The idealized physical situation sketched above in Sec.
Il A is essentially one-dimensional in real space. However,
when treating four-wave mixing in a two-dimensional phase
space on a kinetic level, energy and momentum conservation
rule out all nontrivial collisions. Therefore, we have to
choose at least a two-dimensional discrete velocity model
(DVM).

Figure 2 shows a Shizuta type DVM] with 36 velocities
and six speeds of relative magnitude\5a, 3a, \13a, 5a,
J29%. Later on the DVM scaling parameteris adapted to
fit the physical situation.

For good relaxational behavior, multiple speed collisions
by which we denote binary collisions with three and four
different speeds are crucial. Therefore, the chosen model is
of Shizuta type, allowing elastic multiple speed collisions
between all species, as, for instance

(V4,Vo2)=(Vg,Vig), (V1,V21)=(Vg,Vig),
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(V3,V29)=(V7,V25),  (V13,V32)=(V17,V27). concerning interactions between the particles. Each particle-
particle collision eventelastic scattering, collisional excita-
It should be noted that at least 50% of all binary collisionstion and deexcitationgenerates an expression of quadratic
involve more than two speeds. nonlinearity in the number densities of the molecules. The
Moreover, in the case of four-wave mixing, inelastic col- particular form reads

lisions represent collisional excitation and de-excitation pro-
cesses. Thus the model must provide such interactions for an Arvj'(Nl’;"'Nl’\" — Ni'V'NJN),
appropriately fixed energy gap Shizuta type models meet ’
this requirement for several possible valuesgofFor the  with M’ ,N’,M,N=A,A* B. The transition rateA:"j' are de-
energy gapq=12m,a’® (we assumemy=mx.) exemplary fined in the following way: '
collisions involving four different speeds are given by

k) _ el(in) M _ NIy [ M _ N[ Akl
(V5,V33)=(V4,V15) + 0, Al = o (V=D VT = viTlady

The transition probability of each particle-particle event is
taken into account b)a!f'j'. For more detailed information
about symmetry relations @' | see Ref[9]. The complete

(V13,V32)=(V1,V0) 0. . S T
expressions of the collision terms are very cumbersome, and

The above considerations imply that the collisional schemére therefore not quoted here. Their actual expressions can be

shows all features necessary to meet the requirements of@ptained from the authors.

kinetic description of four-wave mixing. The macroscopic quantities of interest are the number
It is clear that establishing a DVM consisting of a ratherdensities of each specied', the total number density, the

high number of velocities and three distinguishable speciefass density of each specig¥', the mass density of the

demands sophisticated computational techniques. The maj#hole mixturep, the average gas velocity of each species

problem to overcome is the high numb@bout 16) of ad-  u", the average gas velocity of the whole mixture the

missible collisions inflating the collisional term of the kinetic average internal kinetic energy of each spee¥sand the

equations. A computer program especially developed andverage internal kinetic energy of the whole mixtererhe

tested by one of the autho(s.H.) yields the complete col- Species related macroscopic quantities are defined in the

lisional scheme. The input data of this program are the veusual way:

locity vectors, the number of species, the masses of each

(V10,V29)=(V1,V13) + 0,

. . . . 36
species, and the types of interactions taken into account.
P yp nM=> NM for M=AA*B, (2a)
i=1
C. Discrete Boltzmann equations
The governing equations for the number densities of all pM=mMnM for M=A,A* B, (2b)
three species of the gas mixture are a set of coupled nonlin-
ear Boltzmann equations. Equipped with the complete colli- v 1 3 M MM
sional scheme of the system, we can formulate the equations u :p—M 241 muVTN, (20)
I A TV AL ArM Ar M
StV o INR= TNV RANML, (18 1%
eM=—"2> —mMyM-uM)2NM. (2d)
nMi=1 2
(9 * a * *
— VAL NA = AT TNMT = RATNM
at TV ax)N' Ji INFI=R{NTIL (1D The quantities for the whole gas mixture are defined as fol-
lows:
J 17
2T (?X)N. Ji [NV, (1o n=> oM (3a)
M
where NiM(x,t) is the number density of the molecules
M (M=A,A*B) with velocity v (i=1,...,36) at the S o
point x at time t and N™ is an abbreviation of p= o P (3b)
(N, .o NS,
The right hand sides of Eq$l) are the collision terms 1 36
due to the interaction processes described in Sec. Il A. Inter- u==> > mMvMNM, (39
actions between the radiation intensity and the particle spe- P M i=
ciesA andA* are taken into account by %
1 1
* —— “mMwM = y)2NM
RAINM,11=(a+ BN~ BINZ, e=h 3 & pmiun. @3d

where 1=1(x,t) is the laser intensity. The functionals |t should be noted that all macroscopic quantities in E2js.
JHNM], JAINM], and JP[NM] are the collision terms and(3) are functions of space and timet.
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D. Equilibrium conditions

The state of the whole gas mixture in the sample volume
before the powerful driver laser pulse starts interacting with
the gas specie& andA* is assumed to be a thermodynami- &

el

cal equilibrium state. Therefore, it is necessary to specify'g 1+
conditions at equilibrium. In our model, equilibrium is estab- ¢34
lished if all particle-particle collision terms of Eq4) simul- =
. ) 0.6
taneously vanisfi5]. This means &
Z 0.4
JHINANAT NP]=0, 48 o2
« . § 0
TP INANA,N®B]=0, 4D 33

JPINANA NP]=0. (40 -2
Fringe spacing (1um)

-3 0 Time (ns)

Equilibrium concerning the elastic particle-particle scattering o . .
processes is fulfilled by the following expressions for the FIG. 3. Temporal and spatial intensity profile of the pulsed
number densities: driver laser.

M _ M M . .
NY'=aMexgc-vi" = BIvi"|?], (5 laser frequency and the angle of intersection of the laser

" ) beamgd/4]. Typical values range from 1 to 3@m. For our
where a™, ¢, and B are the so-called Maxwellian param- gimulations we fix this value ta =6 am.

eters. In addition, demanding equilibrium concerning the col-  the pym scaling paramete is determined by resorting
Ii.si.onal excitation and de-excitation processes yields the cofy, the fact that a sufficiently small perturbation propagates
dition with the speed of sound, which is around 330 Mfor a
A* A gas, say air, at standard conditions. A value af

a” =a’exd —Bdl, 6 =500 ms? fulfills this requirement and adjusts the under-
lying DVM to our physical situation.
For the number density of molecul& we choosen®
10® m~3, a value that is typical of standard conditions.
oleculesA andA* are considered to be of low concentra-
tion, and therefore we choos€'+n”* =10 3nB. Without
loss of generality we fix the mass ratio®/mf=1. This
allows us to use only one DVM, which means that
=vi* =2 This is a good approximation for NO, NQand

where the quantityg is the difference of the precollisional
and postcollisional kinetic energies. Since the laser fre-_
guency is assumed to be tuned to excite the electronic trarﬁ
sition of specieA andA*, the internal energy is equal to
hv. The Doppler effect, though essential for a variety of
photon-gas interactions such as laser coolibg], is of no
importance in FWM, and is therefore neglected by our
model.

The resulting independent Maxwellian parametery 0O, i . . o
B, ¢, andg are related by a one-to-one map to the indepen- The temporal_ and spat|al profile of the intensity in the
dent macroscopic quantities of the systé@h As a particular  S@mple volume is described by the formidg
result it can easily be shown that=0 implies uM=u=0,
and vice versa. However, it is not possible, in general, to 03 1

ser pullse

express the Maxwellian parameters as functions of the inde 0 _ vavaras S
pendent macroscopic quantities in terms of analytic func- 5 AW /\f\f J S
tions. Despite this shortcoming, we are able to fix a thermo- g -03 T l\ l w VR
dynamical equilibrium state by simply specifying the -“E -0.6 i [y
independent Maxwellian parameters. Z oo i /\ \I ]
2 LY
Ill. SIMULATIONS 'q: ’ I V

In this section we investigate the formation and evolution § ' ’ I
of the driver laser-induced thermal and density gratings. Sev- g -18 ’ v
eral different cases are studied. To this end, we solve numeriT _»;
cally the set of coupled discrete Boltzmann equations, i.e., =
Egs. (1), for suitable initial and boundary conditions. Since 24

the period of the intensity grating formed by the two driver
laser beamsge.g., the fringe spacing) is very small com-
pared with the extension of the sample volume, we assume
both the extension of the intensity grating and the sample FiG. 4. Time evolution of the relative density deviation in the
volume to be infinite. Based on this assumption, it is suffi-middle of the fringe spacing. The dashed and solid lines show the
cient to consider only one fringe spacing together with peritesults obtained by the fluid dynamic and the discrete kinetic model
odic boundary conditions. The fringe spacing depends on thé&Kn=0.0033, respectively.

0 30 60 90 120 150 180 210 240 270 300
Time (ns)
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FIG. 5. Time evolution of the relative energy density deviation Viation inside the fringe spacing for a Knudsen number-r0167

in the middle of the fringe spacing. The dashed and solid lines shov@nd an inelastic cross sectior'=1 nnt.

the results obtained by the fluid dynamic and the discrete kinetic

model (Kn=0.0033, respectively. of possible variations, we assume all elastic and the two

inelastic cross sections to have the same value. This reads in
" | 2t ( t
X)=lg—exp —|—

(t,x)=lo 2 e

detail as
wherexe[—\,\] andte[0,»). A graphical representation 5.4
is sketched in Fig. 3. The quantityindicates the duration of
the laser pulse. We fix this parameter t=8 ns. The in_ _in in
strength of the laser intensity is controlled hy A chosen 0 = O0ppa-Anc = OpB-A*B"
value for the producBl,=10° s ! causes the ratio®*/n*
to be approximately 177 (the weak pumping limjt The  For a characterization of the dominant gas spe@esve
effect of spontaneous emission modeled by the Einstein cantroduce a Knudsen number which is defined, as usual, in
efficient a is for the formation and evolution of the gratings the following way:
of minor importance. Nevertheless, we take this effect into

account by assigning the value 18 s 1.

2

cosz(:x),

o®'=0o8  un for M,N=AA* B

On a microscopic level the different physical situations Kn= 1
are characterized by the cross sections introduced in Sec. Ao€'nB’
[l A. To simulate these situations, we have to specify six
elastic and two inelastic cross sections. To restrict the variety 1
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inside the fringe spacing for a Knudsen numberkh0167 and an  correspond to Knudsen numbers Kn with values 0.0033, 0.0083,
inelastic cross section’"=1 nn?t. and 0.0167, respectively.
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FIG. 9. Relative kinetic energy deviation in the middle of the  FIG. 11. Relative kinetic energy deviation in the middle of the
fringe spacing for an inelastic cross sectioli=1 nnt. (a), (b), fringe spacing for a Knudsen number ¥0.0167. Curvesl), (2),
and (c) correspond to Knudsen numbers Kn with values 0.0033,3), (4), (5), and(6) correspond to inelastic cross sectiari8 with
0.0083, and 0.0167, respectively. values 1, 0.1, 0.05, 0.02, 0.01, and 0.005?nrespectively.

Based on the fractional step methftb—18, we perform lution in the middle of the fringe spacing for several Knud-
numerical simulations for a wide range of Knudsen numbersen numbers and inelastic cross sections.
by simultaneously varying the inelastic cross sections.

The following subsections present the profiles of the rela- A. Low Knudsen numbers

tive density deviation . .
y In this range of Knudsen numbers the gas mixture be-

nB(t,x)—nB(0x) haves as a fluid, and therefore the problem can also be
— treated in the framework of fluid dynamics. Moreover, since
n=(0x) the perturbations are sufficiently small, linearized fluid dy-

namic equations have shown good agreement with experi-
mental result$4].
€8(t,%)— e3(0x) This Well-es_tablished appro_ach provides a possibili_ty to
_ compare our discrete model with the Boltzmann equation at
eB(0x) low Knudsen numbers. To this end, we solve the linearized
equations of fluid dynamics for the dominant spedigg
The three-dimensional plots show the temporal and spatiabhereas the laser energy deposit is taken into account by a
evolution of these quantities for a selected inelastic crosgain term on the right hand side of the energy equaitn
section. The two-dimensional plots show the temporal evoThe transport coefficients entering these equations, namely,

and the relative kinetic energy deviation
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FIG. 10. Relative density deviation in the middle of the fringe  FIG. 12. Relative density deviation in the middle of the fringe
spacing for a Knudsen number Ki®9.0167. Curvesl), (2), (3), (4), spacing for an inelastic cross sectiolf=1 nn?. (a), (b), (c), and
(5), and(6) correspond to inelastic cross sectiar® with values 1,  (d) correspond to Knudsen numbers Kn with values 0.021, 0.033,
0.1, 0.05, 0.02, 0.01, and 0.005 fimespectively. 0.083, and 0.167, respectively.
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FIG. 13. Relative density deviation in the middle of the fringe inside the fringe spacing for a Knudsen number=Kin67 and an
spacing for a Knudsen number K0.167. Curvesl), (2), (3), (4), inelastic cross section=1 nnt.

\(/5)|' (6)’138(11(70) Oc;rroe(s)gogdoio O":%gsncn dcg)g% 136:;'5005(:&2? posit of the laser energy in the latter case. Consequently, the
alues 4, ©.4, 0.L5, 8.0, 0,02, 0,065, and 0.00%, Mesp Y- simulations using our DVM give a valid picture of the phys-

L . L . ics of thermal gratings in the fluid dynamic limit.
the thermal conductivity and the kinematic viscosity, are ob- Figures 6—11 show the results of DVM simulations for

tained by the Chapman—Enskperturbation techniquel9]  knydsen numbers ranging from Ki9.003 to 0.017 and in-
for monatomic hard sphere molecules. Figures 4 and 5 shoWastic cross sections from"=0.005 to 1 nrA. The gas
a comparison between the fluid dynamic approach and thgixture responds to the laser pulse with damped oscillations
kinetic model, where we observe good agreement. In particUor hoth the number density and kinetic energy. The damping
lar, the structures of the density and energy oscillationgate of the oscillations depends strongly on the Knudsen
match. The small discrepancies between the two approach@simber, as can be seen in Figs. 8 and 9. For a Knudsen
are attributed to the discrete character of our kinetic modelnumber Kn=0.003, the gas mixture oscillates more strongly
Furthermore, a faster energy deposit into the system iand much longer than for Kn0.017. The most significant
observed in the case of the fluid dynamic model. Here thelifference in this context is that the general character of the
deposition of the laser energy is described by a one stegensity oscillations does not depend on the inelastic cross
process. In the kinetic model, however, the physically moresection, as can be seen in Fig. 10. In fact, the opposite is the
realistic two step process, namely, excitation of a rare spezase for the kinetic energy increase. For high valisé®ng
cies and deposit of kinetic energy by collisional deexcitationquenching the increase is accompanied by oscillations,
events, is taken into account. This explains the slower dewhereas for low values the energy increases monotonously
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fringe spacing for a Knudsen number ¥0.167. Curvedl), (2),
(3), (4), (5), (6), and(7) correspond to inelastic cross sectian8 FIG. 16. Time-space evolution of the relative kinetic energy

with values 1, 0.1, 0.05, 0.02, 0.01, 0.005, and 0.001%,mespec-  deviation inside the fringe spacing for a Knudsen numbe=Ki67
tively. and an inelastic cross sectiotf'=1 nn?t.
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FIG. 17. Relative density deviation in the middle of the fringe  FIG. 18. Relative kinetic energy deviation in the middle of the
spacing for an inelastic cross sectioff =1 nnt. (a), (b), (), and  fringe spacing for an inelastic cross sectiefi=1 nn?. (a), (b),
(d) correspond to Knudsen numbers Kn with values 0.21, 0.33(c), and(d) correspond to Knudsen numbers Kn with values 0.21,
0.83, and 1.67, respectively. 0.33, 0.83, and 1.67, respectively.

and spatially uniformly. This is demonstrated in Figs. 7 and

Fig. 11 more and more nonlinear features. Even the kinetic energy

no longer increases monotonously, as can be seen in Figs. 17
) and 18.
B. Medium Knudsen numbers
In this range the equations of fluid dynamics lose gradu- IV. CONCLUSION
ally their validity. An interesting and unexpected behavior of , . .
the gas mixture exposes Fig. 12. The temporal density oscil-_ 11iS Paper treats and simulates the physical processes be-

lations disappear almost completely with increasing Knudseind the laser-induced thermal acoustics at a microscopic
number. In other words, at Kr0.083 the mechanisms con- level. A regular discrete velocity model of Shizuta type with

trolling the damping effects reveal their strongest influence3€ velocities and six speeds proves capable of describing gas

Another demonstration that the inelastic cross section dod®ixtures that interact with an intensity field of a laser. The
not influence the general character of the oscillations ignodel takes into account the most important interaction pro-

shown in Fig. 13. The strength of the oscillations decrease§€SSes which dominate the physical behavior of the system.
as the inelastic cross section decreases. Figure 14 shows th@r low Knudsen numbers, the model provides the same re-
increase of the kinetic energy at K0.083 for several in- Sults as obtained by numerically solving the equations of
elastic cross sections. For low valuesodt the deposition of ~ fluid dynamics in their linearized formulation. Our approach

the internal energy of the gas specis cannot take place especially provides a description of the physics of four-wave

rapidly, and, therefore, the kinetic energy of the whole gadNXing for higher Knudsen numbers. For medium Knudsen
mixture increases very smoothly. numbers it is shown that the oscillations are strongly damped

and hardly appear. However, with increasing Knudsen num-
ber, the oscillations regenerate and show nonlinear temporal
character. We attribute this phenomenon to almost free mo-

This is the region where a molecular gas kinetic modelecular flow of the gas particles through several fringe spac-
has to be used. Figures 15-18 show the results of a simulangs. These consecutive fringe spacings give rise to the ob-
tion that a linearized hydrodynamical approach cannot proserved interference effects in this domain of rarefication.
vide. In Sec. 1l B, we observed that the density oscillations

C. High Knudsen numbers

disappear until a Knudsen number ¥0.083 is reached. ACKNOWLEDGMENTS
However, the density oscillations regenerate with increasing
Knudsen numbers, as demonstrated in Fig. 17. Fer K67, The present piece of research is part of a project sup-

the gas mixture is a Knudsen gas, which means that the ggmrted by the Austrian Science FufBWF) through Con-
behavior is mainly determined by the periodic boundary contract No. P10879-TEC. One of the authdvg.K.) would like
ditions. This explains the reappearance of the density osciko express his gratitude toward the Rektor of the Technical
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