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Treatment of laser-induced thermal acoustics in the framework of discrete kinetic theory

F. Hanser,* W. Koller,† and F. Schu¨rrer‡

Institute for Theoretical Physics, Technical University Graz, Petersgasse 16, A-8010 Graz, Austria
~Received 24 May 1999; revised manuscript received 3 September 1999!

The physics behind the laser-induced thermal acoustics technique is dealt with on a microscopic level. A
discrete velocity model of the Boltzmann equation for inelastically interacting gas mixtures in the presence of
two counterpropagating laser beams is established. The collisional scheme for the model is developed by
taking into account elastic and inelastic interactions between the gas particles, on the one hand, and the
interactions between monochromatic laser photons and gas particles, on the other hand. The formation and
evolution of laser-pulse-driven thermal and density gratings are simulated by numerically solving the discrete
kinetic equations based on the fractional step method. Numerical results are provided for a wide scope of
Knudsen numbers.

PACS number~s!: 02.70.2c, 51.10.1y, 47.45.2n, 33.50.Hv
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I. INTRODUCTION

The excitation of acoustic and thermal waves by the
of pulsed laser light is a well-known phenomenon. It w
first reported as an artifact in degenerate four-wave-mix
experiments performed on strongly absorbing transitions
collision-dominated gas-phase systems@1#.

A recently presented method based on this phenomeno
the laser-induced thermal acoustics~LITA !. It is an optical
four-wave-mixing~FWM! technique for remotely and non
intrusively measuring the physical and chemical proper
of gases. The development of this technique by Cummi
@2# addressed issues including the need to make meas
ments in a single laser pulse as well as the need to m
measurements in extremely challenging environments. S
examples are measurements in the primary and reflec
shock regions at the exit of a combustion driven shock t
or measurements of low concentrations of toxic gases
combustion engines@3#.

LITA scattering is subdivided into two steps. In the fir
step, light from a powerful pulsed laser is split into tw
phase-coherent beams that intersect at a shallow angle.
region of the intersection of the two laser beams defines
sample volume. The interference of the driver laser bea
creates an electric field intensity grating. The gas mixture
the sample volume responds to the intensity grating by
toacoustic effects. The two major optoacoustic effects
thermalization and electrostriction. These effects can per
the bulk properties of the medium. Other optoacoustic
fects, including photophoresis and thermophoresis, are of
nor importance.

The second step involves scattering of a source beam
ser into a coherent signal beam by optoacoustic effects
gases, the most important effect is scattering from den
perturbations. The signal beam is modulated in time by
evolution of laser-induced perturbations. From these mo
lations, accurate physical properties of the medium may
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inferred, including the sound speed, thermal diffusivity, a
other properties that affect the development of the las
induced gratings. Therefore, deep insight and understan
of the dominant processes is very important.

On physical grounds, the formation and evolution of the
gratings has been treated using the equations of fluid dyn
ics in its linearized form@4#. This assumes a uniform behav
ior of the medium and small perturbations. In addition, t
assumption of linear hydrodynamic behavior eliminates a
riety of phenomena which could affect the signals in re
experiments. Moreover, using hydrodynamic equations
sumes scales of gradients of fluid properties to be small c
pared to molecular mean-free paths. This implies that
large Knudsen numbers~a ratio between a laboratory lengt
and the mean free path! or in situations in which nonlinea
effects gain importance, other models have to be used.

Cummings himself proposed resorting to a molecular g
dynamics model. A microscopic approach also allows
investigation of the evolution of each component of the m
dium. This could be interesting when one deals with spec
gratings which are generally ignored. A model describing
medium on a microscopic level consists of a set of Bol
mann equations for inelastically interacting gas mixtu
@5–7#. These coupled nonlinear integrodifferential equatio
oppose direct analytical and numerical treatment@5,6#. One
way out of this problem is the discretization of the veloc
space@8,9#. Early discrete velocity models of the continuou
Boltzmann equation refer to idealized gases with only one
two particle speeds@10–12#. This was a big shortcoming
because the temperature was ill defined, and it would be
exaggeration to speak of a velocity distribution when on
two velocity moduli were involved. The physical discre
models, however, are the multispeed ones@13#.

In this paper a discrete velocity model of Shizuta ty
with six speeds is used to describe the formation and dyn
ics of laser-induced density and thermal gratings. Sectio
deals with the general microscopic model. We describe
physical situation together with the dominant interaction p
cesses. We introduce the discrete velocity model and dis
its most relevant features. From the discrete velocity mo
we derive the discrete kinetic equations which govern
system. The last subsection treats some aspects of equ
2065 ©2000 The American Physical Society
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2066 PRE 61F. HANSER, W. KOLLER, AND F. SCHU¨ RRER
rium. In Sec. III we solve numerically the discrete kine
equations by applying the fractional step method. We sim
late the formation and evolution of the laser-induced grati
in different situations. Finally, in Sec. IV we give a concl
sion.

II. MICROSCOPIC MODEL

A. Physical situation

As already mentioned in Sec. I, and as can be seen in
1, the region of intersection of the two driver laser bea
defines the sample volume. The two driver beams inter
forming an intensity grating. In our formalism the laser i
tensity is represented by photonsp. The gas mixture in the
sample volume is composed of the moleculesA, their elec-
tronically excited stateA* , and a second speciesB with
massesmA , mA* andmB , respectively. The laser frequenc
n is tuned to excite the electronic transition between
moleculesA and A* . The energy gap of the transition
given byDE5E(A* )2E(A)5hn. On a microscopic level
the molecules are allowed to undergo the following types
interaction processes:~1! elastic scattering between the mo
ecules,

M1N
M1N for M ,N5A,A* ,B;

~2! collisional excitation of moleculesA,

A1A→A* 1A,

A1B→A* 1B;

~3! collisional de-excitation of moleculesA* ,

A* 1A→A1A,

A* 1B→A1B;

~4! spontaneous emission of photonsp by moleculesA* ,

A* →A1p;

~5! absorption of photonsp by moleculesA,

A1p→A* ;

and ~6! stimulated emission of photonsp by moleculesA* ,

FIG. 1. Experimental situation: The region of the intersection
the two driver laser beams defines the sample volume.
-
s

ig.
s
re

e

f

A* 1p→A1p1p.

The elastic particle-particle scattering processes are mod
by elastic hard sphere cross sectionssMN→MN

el , with M ,N
5A,A* ,B, whereas the collisional excitation processes
indicated by the cross sectionssAA→AA*

in andsAB→A* B
in . The

inelastic cross sectionssAA* →AA
in and sA* B→AB

in for the in-
verse processes~collisional de-excitation! are determined by
a microreversibility condition@7#.

Interactions between photonsp of the pulsed driver lase
and particle speciesA and A* are taken into account by
means of the Einstein coefficientsa andb @14#. Spontaneous
emission of photons is controlled bya. The magnitude of
absorption and stimulated emission phenomena is pro
tional to b.

B. Discrete velocity model

The idealized physical situation sketched above in S
II A is essentially one-dimensional in real space. Howev
when treating four-wave mixing in a two-dimensional pha
space on a kinetic level, energy and momentum conserva
rule out all nontrivial collisions. Therefore, we have
choose at least a two-dimensional discrete velocity mo
~DVM !.

Figure 2 shows a Shizuta type DVM@9# with 36 velocities
and six speeds of relative magnitudea, A5a, 3a, A13a, 5a,
A29a. Later on the DVM scaling parametera is adapted to
fit the physical situation.

For good relaxational behavior, multiple speed collisio
by which we denote binary collisions with three and fo
different speeds are crucial. Therefore, the chosen mod
of Shizuta type, allowing elastic multiple speed collisio
between all species, as, for instance

~v4 ,v22!�~v9 ,v16!, ~v1 ,v21!�~v8 ,v16!,

f

FIG. 2. Regular discrete velocity model of Shizuta type with
velocities and six speeds.
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~v3 ,v29!�~v7 ,v25!, ~v13,v32!�~v17,v27!.

It should be noted that at least 50% of all binary collisio
involve more than two speeds.

Moreover, in the case of four-wave mixing, inelastic co
lisions represent collisional excitation and de-excitation p
cesses. Thus the model must provide such interactions fo
appropriately fixed energy gapq. Shizuta type models mee
this requirement for several possible values ofq. For the
energy gapq512mAa2 ~we assumemA5mA* ) exemplary
collisions involving four different speeds are given by

~v5 ,v33!�~v4 ,v15!1q,

~v10,v29!�~v1 ,v13!1q,

~v13,v32!�~v1 ,v20!1q.

The above considerations imply that the collisional sche
shows all features necessary to meet the requirements
kinetic description of four-wave mixing.

It is clear that establishing a DVM consisting of a rath
high number of velocities and three distinguishable spe
demands sophisticated computational techniques. The m
problem to overcome is the high number~about 104) of ad-
missible collisions inflating the collisional term of the kinet
equations. A computer program especially developed
tested by one of the authors~F.H.! yields the complete col-
lisional scheme. The input data of this program are the
locity vectors, the number of species, the masses of e
species, and the types of interactions taken into account

C. Discrete Boltzmann equations

The governing equations for the number densities of
three species of the gas mixture are a set of coupled no
ear Boltzmann equations. Equipped with the complete co
sional scheme of the system, we can formulate the equat

S ]

]t
1vi

A
•

]

]xDNi
A5J i

A@NM#1R i
A@NM,I #, ~1a!

S ]

]t
1vi

A*
•

]

]xDNi
A* 5J i

A* @NM#2R i
A@NM,I #, ~1b!

S ]

]t
1vi

B
•

]

]xDNi
B5J i

B@NM#, ~1c!

where Ni
M(x,t) is the number density of the molecule

M (M5A,A* ,B) with velocity vi
M ( i 51, . . .,36) at the

point x at time t and NM is an abbreviation of
(N1

M , . . . ,N36
M ).

The right hand sides of Eqs.~1! are the collision terms
due to the interaction processes described in Sec. II A. In
actions between the radiation intensity and the particle s
ciesA andA* are taken into account by

R i
A@NM,I #5~a1bI !Ni

A* 2bINi
A ,

where I 5I (x,t) is the laser intensity. The functiona

J i
A@NM#, J i

A* @NM#, and J i
B@NM# are the collision terms
-
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-
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concerning interactions between the particles. Each parti
particle collision event~elastic scattering, collisional excita
tion and deexcitation! generates an expression of quadra
nonlinearity in the number densities of the molecules. T
particular form reads

Ai , j
k,l~Nk

M8Nl
N82Ni

MNj
N!,

with M 8,N8,M ,N5A,A* ,B. The transition ratesAi , j
k,l are de-

fined in the following way:

Ai , j
k,l5sMN→M8N8

el( in)
~ uvi

M2vj
Nu!uvi

M2vj
Nuai , j

k,l .

The transition probability of each particle-particle event
taken into account byai , j

k,l . For more detailed information
about symmetry relations ofAi , j

k,l , see Ref.@9#. The complete
expressions of the collision terms are very cumbersome,
are therefore not quoted here. Their actual expressions ca
obtained from the authors.

The macroscopic quantities of interest are the num
densities of each speciesnM, the total number densityn, the
mass density of each speciesrM, the mass density of the
whole mixturer, the average gas velocity of each spec
uM, the average gas velocity of the whole mixtureu, the
average internal kinetic energy of each specieseM, and the
average internal kinetic energy of the whole mixturee. The
species related macroscopic quantities are defined in
usual way:

nM5(
i 51

36

Ni
M for M5A,A* ,B, ~2a!

rM5mMnM for M5A,A* ,B, ~2b!

uM5
1

rM (
i 51

36

mMvi
MNi

M , ~2c!

eM5
1

nM (
i 51

36
1

2
mM~vi

M2uM !2Ni
M . ~2d!

The quantities for the whole gas mixture are defined as
lows:

n5(
M

nM, ~3a!

r5(
M

rM, ~3b!

u5
1

r (
M

(
i 51

36

mMvi
MNi

M , ~3c!

e5
1

n (
M

(
i 51

36
1

2
mM~vi

M2u!2Ni
M . ~3d!

It should be noted that all macroscopic quantities in Eqs.~2!
and ~3! are functions of spacex and timet.
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D. Equilibrium conditions

The state of the whole gas mixture in the sample volu
before the powerful driver laser pulse starts interacting w
the gas speciesA andA* is assumed to be a thermodynam
cal equilibrium state. Therefore, it is necessary to spe
conditions at equilibrium. In our model, equilibrium is esta
lished if all particle-particle collision terms of Eqs.~1! simul-
taneously vanish@5#. This means

J i
A@NA,NA* ,NB#50, ~4a!

J i
A* @NA,NA* ,NB#50, ~4b!

J i
B@NA,NA* ,NB#50. ~4c!

Equilibrium concerning the elastic particle-particle scatter
processes is fulfilled by the following expressions for t
number densities:

Ni
M5aMexp@c•vi

M2buvi
Mu2#, ~5!

where aM, c, and b are the so-called Maxwellian param
eters. In addition, demanding equilibrium concerning the c
lisional excitation and de-excitation processes yields the c
dition

aA* 5aAexp@2bq#, ~6!

where the quantityq is the difference of the precollisiona
and postcollisional kinetic energies. Since the laser
quency is assumed to be tuned to excite the electronic t
sition of speciesA andA* , the internal energyq is equal to
hn. The Doppler effect, though essential for a variety
photon-gas interactions such as laser cooling@15#, is of no
importance in FWM, and is therefore neglected by o
model.

The resulting independent Maxwellian parametersaA,
aB, c, andb are related by a one-to-one map to the indep
dent macroscopic quantities of the system@9#. As a particular
result it can easily be shown thatc50 implies uM5u50,
and vice versa. However, it is not possible, in general,
express the Maxwellian parameters as functions of the in
pendent macroscopic quantities in terms of analytic fu
tions. Despite this shortcoming, we are able to fix a therm
dynamical equilibrium state by simply specifying th
independent Maxwellian parameters.

III. SIMULATIONS

In this section we investigate the formation and evolut
of the driver laser-induced thermal and density gratings. S
eral different cases are studied. To this end, we solve num
cally the set of coupled discrete Boltzmann equations,
Eqs. ~1!, for suitable initial and boundary conditions. Sin
the period of the intensity grating formed by the two driv
laser beams~e.g., the fringe spacingl) is very small com-
pared with the extension of the sample volume, we assu
both the extension of the intensity grating and the sam
volume to be infinite. Based on this assumption, it is su
cient to consider only one fringe spacing together with pe
odic boundary conditions. The fringe spacing depends on
e
h

y

g

l-
n-

-
n-

f
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o
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-
-

v-
ri-
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e
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-
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e

laser frequency and the angle of intersection of the la
beams@4#. Typical values range from 1 to 30mm. For our
simulations we fix this value tol56 mm.

The DVM scaling parametera is determined by resorting
to the fact that a sufficiently small perturbation propaga
with the speed of sound, which is around 330 ms21 for a
gas, say air, at standard conditions. A value ofa
5500 ms21 fulfills this requirement and adjusts the unde
lying DVM to our physical situation.

For the number density of moleculesB we choosenB

51025 m23, a value that is typical of standard condition
MoleculesA andA* are considered to be of low concentr
tion, and therefore we choosenA1nA* 51023nB. Without
loss of generality we fix the mass ratiomA/mB51. This
allows us to use only one DVM, which means thatvi

A

5vi
A* 5vi

B . This is a good approximation for NO, NO* , and
O2.

The temporal and spatial profile of the intensity in t
sample volume is described by the formula@4#

FIG. 3. Temporal and spatial intensity profile of the puls
driver laser.

FIG. 4. Time evolution of the relative density deviation in th
middle of the fringe spacing. The dashed and solid lines show
results obtained by the fluid dynamic and the discrete kinetic mo
~Kn50.0033!, respectively.



f

c
s

nt

ns
Se
six
ie

two
ds in

l, in

on
ho
et

ion

e-

e

83,

PRE 61 2069TREATMENT OF LASER-INDUCED THERMAL . . .
I ~ t,x!5I 0

2t

t 2
expF2S t

t D 2Gcos2S p

l
xD ,

wherexP@2l,l# and tP@0,̀ ). A graphical representation
is sketched in Fig. 3. The quantityt indicates the duration o
the laser pulse. We fix this parameter tot58 ns. The
strength of the laser intensity is controlled byI 0. A chosen
value for the productbI 05109 s21 causes the rationA* /nA

to be approximately 1022 ~the weak pumping limit!. The
effect of spontaneous emission modeled by the Einstein
efficient a is for the formation and evolution of the grating
of minor importance. Nevertheless, we take this effect i
account by assigninga the value 105 s21.

On a microscopic level the different physical situatio
are characterized by the cross sections introduced in
II A. To simulate these situations, we have to specify
elastic and two inelastic cross sections. To restrict the var

FIG. 5. Time evolution of the relative energy density deviati
in the middle of the fringe spacing. The dashed and solid lines s
the results obtained by the fluid dynamic and the discrete kin
model ~Kn50.0033!, respectively.

FIG. 6. Time-space evolution of the relative density deviat
inside the fringe spacing for a Knudsen number Kn50.0167 and an
inelastic cross sections in51 nm2.
o-

o

c.

ty

of possible variations, we assume all elastic and the
inelastic cross sections to have the same value. This rea
detail as

sel5sMN→MN
el for M ,N5A,A* ,B

and

s in5sAA→AA*
in

5sAB→A* B
in .

For a characterization of the dominant gas speciesB, we
introduce a Knudsen number which is defined, as usua
the following way:

Kn5
1

lselnB
.

w
ic

FIG. 7. Time-space evolution of the relative kinetic energy d
viation inside the fringe spacing for a Knudsen number Kn50.0167
and an inelastic cross sections in51 nm2.

FIG. 8. Relative density deviation in the middle of the fring
spacing for an inelastic cross sections in51 nm2. ~a!, ~b!, and~c!
correspond to Knudsen numbers Kn with values 0.0033, 0.00
and 0.0167, respectively.
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Based on the fractional step method@16–18#, we perform
numerical simulations for a wide range of Knudsen numb
by simultaneously varying the inelastic cross sections.

The following subsections present the profiles of the re
tive density deviation

nB~ t,x!2nB~0,x!

nB~0,x!

and the relative kinetic energy deviation

eB~ t,x!2eB~0,x!

eB~0,x!
.

The three-dimensional plots show the temporal and spa
evolution of these quantities for a selected inelastic cr
section. The two-dimensional plots show the temporal e

FIG. 9. Relative kinetic energy deviation in the middle of t
fringe spacing for an inelastic cross sections in51 nm2. ~a!, ~b!,
and ~c! correspond to Knudsen numbers Kn with values 0.00
0.0083, and 0.0167, respectively.

FIG. 10. Relative density deviation in the middle of the frin
spacing for a Knudsen number Kn50.0167. Curves~1!, ~2!, ~3!, ~4!,
~5!, and~6! correspond to inelastic cross sectionss in with values 1,
0.1, 0.05, 0.02, 0.01, and 0.005 nm2, respectively.
s

-

al
s
-

lution in the middle of the fringe spacing for several Knu
sen numbers and inelastic cross sections.

A. Low Knudsen numbers

In this range of Knudsen numbers the gas mixture
haves as a fluid, and therefore the problem can also
treated in the framework of fluid dynamics. Moreover, sin
the perturbations are sufficiently small, linearized fluid d
namic equations have shown good agreement with exp
mental results@4#.

This well-established approach provides a possibility
compare our discrete model with the Boltzmann equation
low Knudsen numbers. To this end, we solve the lineariz
equations of fluid dynamics for the dominant species@2#,
whereas the laser energy deposit is taken into account
gain term on the right hand side of the energy equation@4#.
The transport coefficients entering these equations, nam

,

FIG. 11. Relative kinetic energy deviation in the middle of t
fringe spacing for a Knudsen number Kn50.0167. Curves~1!, ~2!,
~3!, ~4!, ~5!, and~6! correspond to inelastic cross sectionss in with
values 1, 0.1, 0.05, 0.02, 0.01, and 0.005 nm2, respectively.

FIG. 12. Relative density deviation in the middle of the fring
spacing for an inelastic cross sections in51 nm2. ~a!, ~b!, ~c!, and
~d! correspond to Knudsen numbers Kn with values 0.021, 0.0
0.083, and 0.167, respectively.
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PRE 61 2071TREATMENT OF LASER-INDUCED THERMAL . . .
the thermal conductivity and the kinematic viscosity, are o
tained by the Chapman–Ensko”g perturbation technique@19#
for monatomic hard sphere molecules. Figures 4 and 5 s
a comparison between the fluid dynamic approach and
kinetic model, where we observe good agreement. In part
lar, the structures of the density and energy oscillatio
match. The small discrepancies between the two approa
are attributed to the discrete character of our kinetic mod

Furthermore, a faster energy deposit into the system
observed in the case of the fluid dynamic model. Here
deposition of the laser energy is described by a one
process. In the kinetic model, however, the physically m
realistic two step process, namely, excitation of a rare s
cies and deposit of kinetic energy by collisional deexcitat
events, is taken into account. This explains the slower

FIG. 13. Relative density deviation in the middle of the frin
spacing for a Knudsen number Kn50.167. Curves~1!, ~2!, ~3!, ~4!,
~5!, ~6!, and ~7! correspond to inelastic cross sectionss in with
values 1, 0.1, 0.05, 0.02, 0.01, 0.005, and 0.001 nm2, respectively.

FIG. 14. Relative kinetic energy deviation in the middle of t
fringe spacing for a Knudsen number Kn50.167. Curves~1!, ~2!,
~3!, ~4!, ~5!, ~6!, and ~7! correspond to inelastic cross sectionss in

with values 1, 0.1, 0.05, 0.02, 0.01, 0.005, and 0.001 nm2, respec-
tively.
-

w
e

u-
s
es
l.
is
e
p

e
e-
n
e-

posit of the laser energy in the latter case. Consequently,
simulations using our DVM give a valid picture of the phy
ics of thermal gratings in the fluid dynamic limit.

Figures 6–11 show the results of DVM simulations f
Knudsen numbers ranging from Kn50.003 to 0.017 and in-
elastic cross sections froms in50.005 to 1 nm2. The gas
mixture responds to the laser pulse with damped oscillati
for both the number density and kinetic energy. The damp
rate of the oscillations depends strongly on the Knud
number, as can be seen in Figs. 8 and 9. For a Knud
number Kn50.003, the gas mixture oscillates more strong
and much longer than for Kn50.017. The most significan
difference in this context is that the general character of
density oscillations does not depend on the inelastic cr
section, as can be seen in Fig. 10. In fact, the opposite is
case for the kinetic energy increase. For high values~strong
quenching! the increase is accompanied by oscillation
whereas for low values the energy increases monotono

FIG. 15. Time-space evolution of the relative density deviat
inside the fringe spacing for a Knudsen number Kn51.67 and an
inelastic cross sections in51 nm2.

FIG. 16. Time-space evolution of the relative kinetic ener
deviation inside the fringe spacing for a Knudsen number Kn51.67
and an inelastic cross sections in51 nm2.
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and spatially uniformly. This is demonstrated in Figs. 7 a
Fig. 11.

B. Medium Knudsen numbers

In this range the equations of fluid dynamics lose gra
ally their validity. An interesting and unexpected behavior
the gas mixture exposes Fig. 12. The temporal density o
lations disappear almost completely with increasing Knud
number. In other words, at Kn50.083 the mechanisms con
trolling the damping effects reveal their strongest influen
Another demonstration that the inelastic cross section d
not influence the general character of the oscillations
shown in Fig. 13. The strength of the oscillations decrea
as the inelastic cross section decreases. Figure 14 show
increase of the kinetic energy at Kn50.083 for several in-
elastic cross sections. For low values ofs in the deposition of
the internal energy of the gas speciesA* cannot take place
rapidly, and, therefore, the kinetic energy of the whole g
mixture increases very smoothly.

C. High Knudsen numbers

This is the region where a molecular gas kinetic mo
has to be used. Figures 15–18 show the results of a sim
tion that a linearized hydrodynamical approach cannot p
vide. In Sec. III B, we observed that the density oscillatio
disappear until a Knudsen number Kn50.083 is reached
However, the density oscillations regenerate with increas
Knudsen numbers, as demonstrated in Fig. 17. For Kn51.67,
the gas mixture is a Knudsen gas, which means that the
behavior is mainly determined by the periodic boundary c
ditions. This explains the reappearance of the density os
lations. Moreover, the character of the oscillations ga

FIG. 17. Relative density deviation in the middle of the frin
spacing for an inelastic cross sections in51 nm2. ~a!, ~b!, ~c!, and
~d! correspond to Knudsen numbers Kn with values 0.21, 0
0.83, and 1.67, respectively.
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more and more nonlinear features. Even the kinetic ene
no longer increases monotonously, as can be seen in Fig
and 18.

IV. CONCLUSION

This paper treats and simulates the physical processe
hind the laser-induced thermal acoustics at a microsco
level. A regular discrete velocity model of Shizuta type wi
36 velocities and six speeds proves capable of describing
mixtures that interact with an intensity field of a laser. T
model takes into account the most important interaction p
cesses which dominate the physical behavior of the syst
For low Knudsen numbers, the model provides the same
sults as obtained by numerically solving the equations
fluid dynamics in their linearized formulation. Our approa
especially provides a description of the physics of four-wa
mixing for higher Knudsen numbers. For medium Knuds
numbers it is shown that the oscillations are strongly dam
and hardly appear. However, with increasing Knudsen nu
ber, the oscillations regenerate and show nonlinear temp
character. We attribute this phenomenon to almost free
lecular flow of the gas particles through several fringe sp
ings. These consecutive fringe spacings give rise to the
served interference effects in this domain of rarefication.
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FIG. 18. Relative kinetic energy deviation in the middle of t
fringe spacing for an inelastic cross sections in51 nm2. ~a!, ~b!,
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